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A subset of a metric space can have a nucleus, a pre-eminent element at
which the mass of the set is concentrated. This notion, introduced by G. Strang
in [6], arises from the examination of the structure of a set using e-entropy.
The latter, a discrete quantification of the size ofa set, first arose in the study of
tabulation and information storage (see [5] and [7]).

The nucleus concept applies it to a different problem, that of locating a
distinguished element of a set.

Seeking a nucleus can be viewed as examining the structure of a set (say,
the set of functions satisfying certain constraints, or the set of admissible
functions in some problem) to find a most characteristic element, as contrasted
with choosing that member of a special subset minimizing a residual. The
nucleus has interesting analytic, probabilistic, and variational properties,
some of which are presented in this paper. In addition, specific examples of
nuclei in function spaces are established here.

PRELIMINARIES

If A is a subset of a metric space, N.(A) is defined to be the smallest number
of elements in any covering of A by sets of diameter <2e. This quantity is
studied in detail in [5], and is known in connection with information theory
[7]. As e --+ 0, it is taken as a comparative estimate of the size of A. When
N.(A) is finite for all e > 0, A is called totally bounded. Customarily, log2N.(A)
is called the e-entropy of A.

DEFINITION. Let A be a non-void, totally bounded subset of a metric space.
Then x is the nucleus of A if, for every neighbourhood, V, of x,

(e --+ 0).

In heuristic terms, x is the nucleus of A if every neighbourhood of x in A is
asymptotically as large as all of A.

It is not difficult to prove ([4], pp. 13-14) that no set has more than one
nucleus. What is interesting is that any set should have so unusual a structure.
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The simplest example is that of convergent sequences: if A is a sequence
{at}t= I of distinct elements, and if lim at = x, then x is the nucleus of A. This

i-+co

is true since for any fixed neighbourhood, V, of x,

N.(A n V),,;;; N.(A) ,,;;; N.(A - V) + N.(A n V),

and N.(A - V) remains bounded while N.(A n V) does not. The converse
ofthis theorem does not hold, however-there exist non-convergent sequences
which have nuclei ([4], pp. 15-17).

Clearly, it is enough to consider neighbourhoods V of the form

Sex, r) = {zld(x, z) < r},

(where d denotes the metric). Furthermore, since N. assumes only integer
values and is a right-continuous function of €, any countable set of values of
€ can be discarded in proving N.(A n V) ~ N.(A). These facts will be used
in the proofs to follow.

PRESCRIBED ORDINATES

Fix a finite real interval [a, b], and abscissae {t;}L 0 with a = to < t I < ... < tn

= b. Let {xt}7~0 be real numbers with !Xi+1 - xtl ,,;;; LltHI - td, where L> °
is fixed. Denote by A the set ofreal-valued functions,/, on [a,b], satisfying a
Lipschitz condition with coefficient L, and for whichf(tt) = Xt (i = 0,1, .. .,n).
That is,

A ={f: [a,b] --+ Rlf(ti) = Xt (i=0, 1, .. .,n)

and'r;j x,y, If(x) - f(y) I ,,;;; Llx - y[}.

The metric is d(/, g) = sup If(t) - g(t)l. A has as a nucleus the broken line
t

function connecting the points (tt, Xi) (i ,= 0, 1, ... ,n). The proof of this fact is
a straightforward extension of that for the case n = 1, which will be presented
here. Now since translation is an isometry, it is enough to consider the case
to = Xo = 0. Likewise, the change of independent variable T = Lt maps the
set A isometrically onto a similar set in which the Lipschitz coefficient is 1.
Consequently, only the case L = 1 need be considered.

THEOREM 1. Suppose t l > °and Ixd < tl. Let A be the set of real-valued
functions on [0, td which satisfy a Lipschitz condition with coefficient 1 and
connect the origin to the point (tl,xa. Then A has as a nucleus the function
yet) = (XI/tl)t.

Proof The proof consists of two parts, a construction and an analysis.
The construction resembles that of [5] and produces an optimal covering

of A by {S(CP,€)}epEclJ•• (Overscore denotes topological closure.) ([J. is the finite
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set of functions to be constructed. Start with the set (/> characterized by the
conditions that rj; E (/> if

(a) rj;(t) = 0 for 0 ~ t ~ E, and
(b) on each of the intervals (i-l)E~t~iE (i=1,2, ... ,[tt/E]) and

[t t/E] E~ t ~ t 1, rj; is linear with slope either +1 or -1. Discard any
value of Edividing t 1 exactly.

The members of (/> trace out a diamond pattern in the part of the t - x plane
under scrutiny. Each diamond can be divided into four subdiamonds by
joining the midpoints of its opposite sides. The construction of (/>. depends
on which subdiamond contains the point P = (tI>X I ). Start with the case
when (tl,X I) falls in the leftmost subdiamond of some diamond. Suppose
the leftmost vertex of that diamond is (p.E,k.E) = Q. Then in order for rj;
to be in (/>..

(a) on 0 ~ t ~P. E, rj; must agree with a member of ep, and
(b) on P. E~ t ~ t l , rj; must follow the straight line from Q to P.

If P falls in a different subdiamond, the above construction is applied after
a translation of the entire grid moves P into the leftmost subdiamond of the
diamond containing it. In the process the mesh point at (E, 0) is moved to
either (0,0), (E/2, E/2), or (E/2, -E/2) , and remains connected to the origin by
a straight line. Values of E for which P falls on a boundary between sub­
diamonds are discarded. An extension of Kolmogorov's proof ([5], pp.
285-288) can be applied in all four of these cases to show that A c U S(rj;, E).

g,E<P.
Thus, N.(A) ~ card (ep.).

For a lower bound on N.(A), choose, for each E> 0 still in consideration,
an E' > Eso small that the point P remains in the same subdiamond as initially.
Clearly, ep., is 2E-separated; i.e., d(rj;,tj;»2E for all rj;, tj;Eep., with rj;i=tj;.
Furthermore, since the configuration in the t - x plane is the same for ep., as
for eJ>.. card (ep.,) = card (ep.). Now if B is a 2E-separated subset of A, then
N.(A) > card (B), for otherwise some set ofa covering by sets of diameter ~ 2E
contains more than one member of B. Consequently, N.(A) > card (ep.,)
= card(ep.) and, in fact, N.(A) = card (eJ>.).

For the analysis part of the proof, let r > 0 be arbitrary and take V = S(y, r).
We must show that N.(A n V) ~ N.(A) (E ---+ 0). Construct eJ>. as before, this
time excluding, in addition, every value of Efor which any of the mesh points
(iE, jE) (i, j integers) fall on either of the boundary lines x = (x1lt at ± r.
If E' > Eis now chosen smaller than before and so small that none of the mesh
points between the boundary lines reach these lines, ep., n V is a 2E-separated
subset of A n V, so that the reasoning above yields

N.(An V»card(ep.,n V)=card(ep.n V).
13
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We now have
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1
N.(A n V) card(l/J, n V)

> > floN,(A) card ('¥,)

But, asslgmng equal probabilities to each 1> E l/J" this last ratio is just
Prob{1> E V} = Prob{d(1), y) < r}. So it is enough to show that

lim Prob{1> E V} = 1.
,-.0

For this, define, for each t E [0, til and each E still under consideration, a
random variable W(t, E) by evaluating at t a randomly chosen 1> E l/J.. This
process can be thought of as a constrained random walk with time and space
increments E. The relationships governing sums of random variables can be
applied as in [3] (pp. 218-219) to obtain

mean {W(t, E)} = (xdt I) t +O(E) and

variance {W(t, E)} ~:::; 12tIE (1)

(assuming E < !t I which is clearly sufficient).
Choosing Eso small that the O(E) term in (1) is less than -!-r, and applying

Chebyshev's inequality ([3], pp. 218-219), we have

Prob{1 W(t, E) - (Xl/t l) t I< r} > Prob{1 W(t, E) - mean {W(t, E)}I< -!-r}

>1-36r- l t I E.

Since the right side does not depend on t,

Prob{ max IW(t, E) - (xdt l ) t 1< r} > I - 36r- 1 t l E
O:::;;t~tl

or 1> Prob{d(1), y) < r} > 1 - 36r- 1 t l E --+ 1

as required. Q.E.D.
The problem in which more than two ordinates are prescribed (n> I) is

handled by repeating the constructions of the theorem for each of the intervals
[tl-I, t l ] (i = 1,2, ..., n).

SUM CONSTRAINTS

In the same setting as before, we seek the nucleus of a set of functions
constrained by a condition of the form '27~ I ctf(t;) = 1, where the Ct are
fixed constants and the t; are prescribed abscissae. In order to convey the basic
approach as clearly as possible, we first present the case n = 2.

Suppose CI' C2 are constants with C2 =1= 0, and suppose 0 < t l < t2 = T.
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(2)

Using the uniform metric as before, define A to be the set of functions
f: [0, T] -')- R such that

(a) f satisfies a Lipschitz condition with coefficient 1,
(b) f(O) = 0, and
(c) cJ!(t l) + cl!(t2) = 1.

The choice of parameters is assumed to be such that A is non-void. The
ordinate, XI' at t l is to be thought of as an independent variable, with the
ordinate, X 2, at t2 depending on it according to the relation

X 2 = X2(XI) = c2"l(l - CIXI)'

THEOREM 2. The nucleus ofA is the function

(t) = { (B/t 1) t for 0,,;;; t,,;;; t l
Y B+ (C2"1 - cB)(t2 - t 1t l (t - t l ) for t l ,,;;; t,,;;; t2

where c = 1 + CI Cl i and where Bis the unique solution of

tl + B(t2 - t l - xiB) + B)C = 1
tl-B t2 -tl +xiB)-B

in the interval 1= {f(tl)lfE A}.
Writing In for the natural logarithm, define

B(xl)=(t1 +xl)ln(tl +Xa+(tI-xl)ln(tl-xl)

+ (t2 - t l + X2 - XI) In (t2 - tl + X2 - XI)

+ (t2 - t l - X2 + XI) In (t2 - t l - X 2 + XI)'

The proof of the theorem follows from a number of propositions, which we
present first.

PROPOSITION 1. The absolute minimum of B(xl ) for XI E I occurs when and
only when XI = B, as characterized in (2). Furthermore, Bis interior to I.

Proof Since B is continuous on I (it is extended to the end points of I by
L'Hospital's rule) it attains its minimum there. Differentiating,

B'(xI) = In {t l + XI (t2 - tl - X2 + XI)C}
tl-xI t 2 -t l +X2- X I

and

B "( ) _ 2tl 2c2(t2 - tl)
X I - 2 2+ ( )2 ( )2 .t l -XI t2 -t l - X2-XI

By the Lipschitz condition, B" > °and B '(x I) becomes infinite as X I approaches
an end point of I. Therefore, the minimum of B must occur in the interior of
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I. Since B" > 0, there can be only one relative minimum (call it B). The charac­
terization (2) is obtained by setting B'(B) = 0. Q.E.D.

PROPOSITION 2. Suppose that F(xl) is defined and integrable for XI E I, that
it is continuous in some neighbourhood of B, and that F(B) 7" 0. Then

JF(x )e-B(XI)/2<dx ~F(B)e-B(e)/2<{ 47T€ }1/2
I I I B"(B)

Proof In view of Proposition 1, this follows from the standard result on the
method of Laplace for integrals (see [2], p. 63). Q.E.D.

For values of € dividing neither t l nor t2- t l evenly, define

Also define

(i = 0, 1,2)

for all integers j such that 2j€ is interior to I. The set of all these integers j will
be denoted by J, and its smallest and largest elements by IX and {3, respectively.

PROPOSITION 3. If CI 7" -C2, then

(€ - 0).

Proof From the Euler-Maclaurin sum formula,

2: g;(j) = f" gf(U) du +-t{gf(a) + g;({3)} + Sf! (x - [x] - -1) g;'(u) duo
j EJ f! "

All the terms on the right except the first can, by application of Proposition 2,
be shown to be o(f~ g;(u)du). The assumption C I 7" -C2 is necessary to insure
that the F of Proposition 2 does not vanish at B. Q.E.D.

Define

andhU, €) = K(€) giU), Then for CI 7" -C2 we have just shown

2: hU, €) ~ Bf K(€) y7iE R(B) B"(B)-112e-B(e)12<
jEJ

(€ - 0). (3)

Now for Xl = 2j€ U EJ), join the origin to the point (tl,X I) as in the con­
struction of Theorem 1, and similarly join (tl,XI) to (t2,X2(X I)) to form
<P< c A. As before, {S(ep'€)}'/JE<1>€ covers A (cf. [5], p. 289, [7], pp. 65-68).
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Let Vo U, E) be the number of members of <1>£ passing through (t1,2jE), and,
for i = 1, 2, let v;U, E) = (2jE)i voU, E). A straightforward calculation yields

(i=0,1,2) (4)

PROPOSITION 4. IfCI =1= ~C2 then, for i = 0, 1, 2,

(E -'.>- 0).

(5)

Proof Stirling's formula gives ViU, E) ~ /;U, E). For i = °and i = 2, a
procedure similar to that found in [8], pp. 142,265, is employed to extend this
asymptotic result to the sum. For i = 1, the extension follows from the case
j = 0, and from the result Lfl(j, E) ~ 8 Lfo(j,E), a consequence of(3). Q.E.D.

ProofofTheorem 2.

Case 1: CI =1= -C2'

Using the same reasoning as in Theorem 1, we have

1 >- NJA n V) >- card (<1>£ n V)
r- N£(A) r- card (<1>£)

where V = S(y,r) with r> °fixed.
Fix 8> 0. Assigning equal probabilities to the elements of <1>., let Wet, E)

be the random variable resulting from evaluation of a random member of
<1>£ at t. From (3) and Proposition 4,

(E -'.>- 0).

Since the right side is constant, we have, in fact, lim mean W(tl,E) = 8. Next,
£->0

var W(t
l

E) = L (2jE - mean W(t l, E»2 voii, E) -'.>- L V2(J, E) _ 82
, L vo(J, E) L vo(J, E) .

But since

lim L vii, E) = 82
<->0 L vo(J, E)

by (3) and Proposition 4, we have

lim var W (t l , E) = 0.
£->0
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Now let lJI~ = {lj; E <1>.10 - -!-r < lj;(f l ) < 0+ -!-r} and lJI/ = {lj; E lJI.Iif;(t,)
= 2jE}. Using Chebyshev's inequality and the results of the last paragraph,

there is an EI > 0 such that 0 < E< EI implies card lJI./card<1>.;;" VI - o.
Note that the estimate of the variance in (1) does not depend on XI' This

means that there is an E2 independent of j such that E< E2 implies

card(lJI/ n Vj)/card lJI/;;"~ where Vj = S(mean lJI/,-!-r) c S(y,r) = V.
Consequently, since lJI. = U lJI/, we have card(lJI. n V);;" VI - ocard lJI•.

j

Summarizing,

card(<1>~ n V) card(lJI. n V) . /1- "card(lJI. n V) 1 _"
;;" ffi;;"V U In;;" U

card <1>. card '¥• card T.

whenever 0 < E< min(EI,E2)' Combining this with (5), we have N.(A n V)
- N.(A), as required.

Case 2: CI = -C2' In this case X2 - XI is independent of XI' The second
binomial coefficient in (4) can then be factored out of all the summations that
form means and variances at fl' The remaining sum resembles that treated in
[6], and the mean and variance go to zero uniformly in / for 0 ~ f ~ fl' Over
/1 ~ / ~ f2 , the average, of course, converges uniformly to the straight line
from (fhO) to (/2,C2"I). Since C= 0 in this case, the result just obtained conforms
with the statement ofthe theorem. Q.E.D.

It is an easy matter to generalize Theorem 2 to the case of a Lipschitz
constant not equal to 1and to the case /2 < T. With a few remarks, furthermore,
the method of proofcan be extended to the more general case '2.7_I Ct!(tl) = 1
(where 0 < f l < ... < fn~ T). In this general case, the variables XI' ..., Xn-I
are thought of as independent, and X n as depending on them according to

For completeness, define fo= Xo = O. I is now a polyhedron in (n - I)-dimen­
sional space, and is determined by IXI - XI-Ii ~ L(tl - fl-I) (i = 1,2, .. .,n). It
is easy to see that I is convex.

n

B(XI," .,xn- I) = '2. {(L(tl- fl-I) + XI - xl_I)ln(L(tI- f l- 1) + XI - XI_I)
I~ I

+ (L(tl - fl-I) - XI + XI_I) In (L(tl - fl-I) - XI + XI-I)}'

IfM (XI'" "Xn_l) is the (n - 1) x (n - 1) matrix defined by MIj = d2B/dxldxJ>
then M is positive definite throughout I. To see this, calculate the derivatives
and verify that M = Vn C;;2 ccT +D, where
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(i = 1,2, .. .,n -1)

2L(tj - ti - I )

(a) Vi = L(t
i
-~-t;:p-- (X~-~~~j~;)2 (i = 1, ... , n)

(note: Vj > °throughout I),
(b) cT

= (Ct, C2>" ., cn-a, and
(c) D is the symmetric, tri-diagonal matrix with diagonal entries

D jj = Vi + Vj +1 and off-diagonal entries D i • I +1 = -Vl+l'

Now Vn C;;2 ccT is trivially positive semi-definite, and D is positive definite
because its principal submatrices have determinants which can be shown
inductively to be positive. Therefore, M is positive definite.

The positive definiteness of M guarantees that there is a unique point at
which B attains its minimum, so that the multi-dimensional analogue to the
method ofLaplace ([2], pp. 71-72), can be applied to proving the generalization
of Theorem 2. We state this generalization as

THEOREM 3. Let L> 0, let °< t l < t2 < .. , < tn< T, and let c l , C2, ••• , Cn be
real constants with Cn "# 0. Using the uniform metric, define A to be the set of
functions,!: [0, T] --+ R satisfying a Lipschitz condition with coefficient L such
that f(O) = °and 2,7 ~ I cJ(t j ) = 1. Assuming the choice ofparameters is such
that A is non-void, A has as a nucleus the broken line joining the points (0,0),
(t I, ea, ... , (tn, en), (T, en), the ei being uniquely characterized by

L + Yi.L - Yi+1 (L - Yn)Ci/Cn = 1
L - YI L + YI+I L + Yn

where

CONCLUDING REMARKS

One can verify that if A is any of the sets whose nucleus was determined
above, this nucleus maximizes the functional

H(f) = -I {L + f'(t) 1 L + f'(t) L - f'(t) 1 L - f'(t)} d A
2L n 2L + 2L n 2L t over .

This quantity appears to be an aggregate, or average over t of a quantity
resembling the communication entropy of information theory (see [1], pp.
5-24). Exactly why a quantity of this particular connotation should arise in
the study of nuclei is not completely understood. Perhaps entropy, or un­
certainty, is maximized at a nucleus because any neighbourhood of such a
point encompasses a great many points. At any rate, the maximization of H
forms an interesting and useful part of the theory of nuclei. In particular, it
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enables one to prove uniform convergence of the nucleus of the previous
section for a sequence of sum constraints which are Riemann sums for an
integral constraint. But that is a subject for another paper.

A valuable feature of the approach used to prove the theorems in this paper
is that it avoids the necessity to compute N.(A n V). Instead, the probabilistic
formulation and the use of Chebyshev's inequality permits direct estimation
of N.(A n V)/N.(A) without considering the numerator alone. This alleviates
the problem of counting the number of ep-functions in a fixed neighbourhood
of a suspected nucleus, but there remain many problems in which no way of
calculating N.(A) to sufficient accuracy is known. In particular, a nucleus for
the set of Lipschitz-continuous functions satisfyingj(O) = 0 and fb' c(t) j(t)dt
= 1 has not been rigorously established.

I am indebted to Professor G. Strang for his help and advice during this research, and to
NASA for its very real support.
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